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Numerical simulation of a coupled air–water turbulent flow and associated high Schmidt number mass
transfer is carried out via a hybrid scheme of direct and large-eddy simulations (DNS/LES). Due to the
large density ratio of water and air, the dynamical coupling between the air and water turbulent flows
is found to be weak at the low wind velocity considered here. Instead, the self-sustaining mechanisms
due to the mean shear, which are similar to those near a solid wall, are dominant even close to the
air–water interface. The spatio-temporal correlations between the local mass transfer rate and velocity
fluctuations around the interface reveal that impingement of fresh water on the interface governs the
interfacial mass transfer. It is found that the local mass transfer rate can be predicted from the surface
divergence by the Chan and Scriven’s stagnation flow model. This explains why the mass transfer rate
is well correlated with the intensity of the surface divergence under a variety of flow conditions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent mass transfer across an air–water interface plays a
critical role in geophysical and industrial processes. The basic
problem in predicting the interfacial mass transfer is to estimate
the mass transfer rate K* by using statistical properties of the veloc-
ity fields. Here, the mass transfer rate is defined as

K� ¼ Q �

Dl�
¼ Q �

ða � C�Ba � C�BwÞ
; ð1Þ

where, Q, Dl, CBa and CBw are the mean interfacial mass flux, the
chemical potential difference of a dissolved gas between air and
water, and the bulk concentrations in the two phases, respectively.
A value with an asterisk represents a dimensional value throughout
this article, while a is the dimensionless Ostwald solubility, which is
defined as the ratio of the equilibrium bulk concentrations in water
and air a ¼ C�Bw=C�Ba.

The total mass transfer rate K* is represented by the respective
mass transfer rates in the air and water phases, K�a and K�w, as

K� ¼ K�aK�w
K�a þ a � K�w

: ð2Þ

In general, the molecular diffusivity in air D�a is much larger than
that in water D�w, so that, except for highly soluble (a� O(1)) or
ll rights reserved.

: +81 3 5800 6999.
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reactive gases, the most mass transfer resistance exists on the water
side, i.e., aK�w � K�a or K� � K�w. Furthermore, since the Schmidt
number Sc, which is defined by the ratio between the kinematic vis-
cosity m* and the molecular diffusivity D*, becomes extremely high
Scw ¼ m�w=D�w � Oð103Þ in water, a thin concentration boundary
layer (10–100 lm) is formed just beneath the interface [1]. There-
fore, it is particularly important to understand the microscopic
transport mechanism inside this thin concentration boundary layer,
which should be controlled by complex interaction between bulk
turbulence, a free surface and waves.

However, due to difficulties in the measurement of velocity and
concentration close to a moving interface, most efforts have been
directed toward developing a correlation equation which relates
the mass transfer rate to the macroscopic flow parameters. For
example, empirical relationships between the mass transfer rate
and wind velocity have been widely used to estimate the gas ex-
change across the sea surface in the field of geoscience [2]. In
chemical engineering, an eddy-structure based model, i.e., the sur-
face-renewal model [3], was proposed. In this model, the mass
transfer rate is estimated from the surface-renewal time s�s as

K�w /

ffiffiffiffiffiffiffi
D�w
s�s

s
: ð3Þ

Different approaches have been proposed to determine the surface-
renewal time, e.g., the large-eddy model [4], the small-eddy model
[5,6] and the bursting-frequency model [7,8]. However, they do not
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Nomenclature

A dimensionless proportional constant in the surface
divergence model

c concentration
C mean concentration
Cc Smagorinsky coefficient in the Dynamic Smagorinsky

Model
D molecular diffusivity
K global mass transfer rate
k local mass transfer rate
kx, ky, kz wavenumbers in the streamwise, interface-normal and

spanwise directions
kx_LES, kz_LES maximum wavenumbers of Fourier modes in the

streamwise and spanwise directions in LES region
p pressure
Q mean mass flux at the interface
q local mass flux at the interface
Rab correlation coefficient between variables a and b
Res Reynolds number based on the friction velocity us and

depth d
N number of grid points
Sc Schmidt number
t time
u, v, w velocity components in the x, y, and z directions
us friction velocity
x, y, z streamwise, interface-normal and spanwise directions

Greeks
a dimensionless Ostwald solubility
b surface divergence

DC difference between concentrations at the top and bot-
tom boundaries

DCB difference between the bulk concentrations in air and
water

Dt time step
Dx, Dy, Dz grid spacings in the streamwise, interface-normal and

spanwise directions
d depth of computational domain
dB thickness of the Batchelor sublayer
m kinematic viscosity
q fluid density
ss surface-renewal time
x frequency
ni subgrid-scale mass flux in the ith direction

Superscripts
()* dimensional value
()+ value non-dimensionalized by the shear unit
()0 fluctuating component
ðÞ mean componentbð Þ Filtered value

ð Þ
�

Fourier coefficient

Subscripts
()a value in air
()B value in bulk
()I value at the interface
()rms root-mean-square value
()w value in water
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have wide applicability, since they employ parameters that depend
on a particular flow condition or turbulence properties in the bulk
region away from the interface. For example, it is well known that
the presence of surfactants causes strong attenuation of near-sur-
face turbulence and also a drastic decease in the mass transfer rate
[9]; this is quite difficult to predict only from bulk information.

In order to develop a general and robust model, a local param-
eter which governs the transport processes in the vicinity of the
interface should be properly implemented into the model. Chan
and Scriven [10] first shed light on a role of irrotational stagnation
flow in the gas exchange across a free surface. They showed that
the transport equation at a stagnation point reduces to

oc
ot
þ v

oc
oy
¼ 1

Sc
o2c
oy2 ; ð4Þ

where y is the distance from the interface and v is the velocity in the
y direction. Since the concentration boundary layer is generally
thinner than the viscous sublayer, v can be approximated by the
first term in a Taylor series as

vðyÞ � vð0Þ � � ou
ox
þ ow

oz

� �
y¼0
� y ¼ �by: ð5Þ

Here, b is called the surface divergence.
Recently, particle image velocimetry (PIV) techniques have

been successfully applied to the measurement of interfacial veloc-
ity fluctuations by several researchers. Their results indicate a pos-
sibility that the statistical properties of surface divergence can be
related to the mass transfer rate regardless of a mode of turbulence
generation [11,12], surface contamination [13] and interface defor-
mation [14].

In the meantime, numerical simulations [15–17] have been per-
formed to clarify the microscopic transport mechanisms at high
Schmidt numbers. Basically, their data support the hypothesis that
the surface divergence is the key parameter which governs the
interfacial mass transfer. However, no literature discusses the
quantitative relationship between the local mass transfer rate
and the surface divergence, which is of critical importance to verify
the surface divergence model. Furthermore, in the presence of the
wind shear, which is of particular interest in the preset study, the
interfacial shear stress determines turbulence structures in the
water phase. Hence, the air–water coupling effects on the mass
transfer must be clarified.

Main issues in the present study are as follows:

1. How the local interfacial mass transfer rate can be estimated
when the surface divergence at a point of interest is specified?

2. What kind of conditions should be satisfied in order for the sur-
face divergence to contribute to the mass transfer?

3. How the interaction between air and water turbulent flows
influences the local interfacial mass transfer rate?

In order to calculate high Schmidt number concentration field,
we employ a hybrid DNS/LES scheme [9,18], in which DNS with
fine mesh is applied inside the thin concentration boundary layer,
while LES with coarse mesh in the outer layer.

We will proceed as follows. In Section 2, we describe a compu-
tational model and numerical procedures of the hybrid DNS/LES
scheme. In Section 3, we show fundamental concentration statis-
tics in the air and water phases. Then, we study the interfacial mass
transfer mechanisms with particular focus on air–water coupling
effects. In Section 4, we revisit a one-dimensional advection–diffu-
sion equation (4), and derive quantitative relationship between the
local mass transfer rate and the surface divergence. Finally, we
summarize the present study in Section 5.
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Fig. 1. (a) Computational domain, coordinate system and (b) grid system in the hybrid DNS/LES method.

1014 Y. Hasegawa, N. Kasagi / International Journal of Heat and Mass Transfer 52 (2009) 1012–1022
2. Computational model

2.1. Numerical conditions

We consider a counter-current air–water flow driven by con-
stant pressure gradient. The flow geometry and the coordinate sys-
tem are shown in Fig. 1, where x, y and z are the streamwise,
interface-normal and spanwise directions, respectively. The Rey-
nolds numbers based on the interfacial friction velocity u�s and
the depth d* were set to be Resw = Resa = 150. The density ratio of
water and air is q�w=q�a ¼ 841.

The governing equations are the incompressible Navier–Stokes
and the continuity equations,

oui

ot
þ uj

oui

oxj
¼ � op

oxi
þ 1

Res

o2ui

oxjoxj
; ð6Þ

oui

oxi
¼ 0; ð7Þ

where, the velocity ui and the coordinate xi are non-dimensional-
ized by u�s and d* in each phase. A pseudo-spectral method with Fou-
rier series in the x and z directions and a Chebyshev polynomials
expansion in the y direction was applied. Details of the numerical
procedures are also described in Hasegawa and Kasagi [9,18]. Num-
bers of modes and grid spacings are listed in Table 1.

Since we focus on quantitative relationship between the local
mass transfer rate and the surface divergence, the interface is as-
sumed to be always flat for simplicity. Hence, the resultant cou-
pling conditions at the air–water interface are the continuity of
velocity and tangential shear stresses. They are rewritten in dimen-
sionless forms as
Table 1
Computational conditions (number of modes, number of grid points and grid spacings)

Region kx,

Velocity DNS 0 < y+ < 150 64
Case 1 DNS 0 < y+ < 11.3 19

Switching 11.3 < y+ < 21.6 19
LES 21.6 < y+ < 150 64

Case 2 DNS 0 < y+ < 22.8 19
Switching 22.8 < y+ < 35.4 19
LES 35.4 < y+ < 150 64

Velocity DNS 0 < y+ < 150 64
Case 3 DNS 0 < y+ < 16.5 51

Switching 16.5 < y+ < 21.6 51
LES 21.6 < y+ < 150 64

Velocity DNS 0 < y+ < 150 96
Case 4 DNS 0 < y+ < 11.3 19

Switching 11.3 < y+ < 21.6 19
LES 21.6 < y+ < 150 96
uia ¼
ffiffiffiffiffiffiffi
qa

qw

r
uiw ði ¼ 1 or 3Þ; ð8Þ

u2a ¼ u2w ¼ 0; ð9Þ
1

Resa

ouia

ox2a

¼ 1
Resw

ouiw

ox2w

ði ¼ 1 or 3Þ: ð10Þ

Once the velocity field is calculated at each time step, the con-
centration field of a dissolved gas is obtained by integrating the fol-
lowing transport equation.

oc
ot
þ uj

oc
oxj
¼ 1

Res � Sc
o2c

oxjoxj
: ð11Þ

The dimensionless concentrations in the air and water phases are
defined as

ca ¼
a � c�a � c�wbottom

a � c�atop
� c�wbottom

; ð12Þ

cw ¼
c�w � c�wbottom

a � c�atop
� c�wbottom

: ð13Þ

Here, ac�a is the equivalent molar concentration in water at equilib-
rium, when the molar concentration of a gaseous solute in air is c�a.
In Eqs. (12) and (13), c�atop

and c�wbottom
are the molar concentrations at

the outer boundaries in air and water phases, respectively. At the
interface, the following Henry’s law and the continuity of mass flux
are employed so that

ca ¼ cw; ð14Þ
oca

oya
¼ �a

ScaResa

ScwResw

ffiffiffiffiffiffiffi
qa

qw

r
ocw

oyw
: ð15Þ
ky or Ny, kz D x+ D y+ D z+

, 129, 64 18.4 0.01–1.23 7.2
2, 34, 192 6.1 0.01–0.62 2.4
2, 15, 192 6.1 0.66–0.85 2.4
, 144, 64 18.4 0.86–1.23 7.2
2, 50, 192 6.1 0.01–0.79 2.4
2, 15, 192 6.1 0.81–0.85 2.4
, 128, 64 18.4 0.86–1.23 7.2

, 289, 64 18.4 0.002–0.38 7.2
2, 94, 512 2.3 0.002–0.34 0.9
2, 15, 512 2.3 0.35–0.38 0.9
, 324, 64 18.4 0.002–0.38 7.2

, 129, 96 12.3 0.01–1.23 4.9
2, 34, 192 6.1 0.01–0.62 2.4
2, 15, 192 6.1 0.66–0.85 2.4
, 144, 96 12.3 0.86–1.23 4.9
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In this work, a is assumed 1.0, which approximately corresponds to
the solubility of carbon dioxide at the standard temperature and
pressure.

The Schmidt numbers used in this study are 1.0 and 100 in
water, while kept constant at Sca = 1.0 in air. DNS is applied to
the concentration field at Scw = 1.0 in the whole domain by using
a pseudo-spectral method. For the high Schmidt number of 100,
the hybrid DNS/LES scheme is employed.

2.2. Hybrid DNS/LES scheme

In the hybrid DNS/LES scheme, the computational domain in
water is divided into three regions, i.e., DNS, switching and LES re-
gions, as shown in Fig. 1b. The depth of the DNS region is deter-
mined so that more than 95% of the mean concentration change
is resolved by DNS. In order to connect the DNS and LES regions
smoothly, we provide the switching region between them.

For spatial discretization, Fourier series are used in the x and z
directions, and the finite volume method is employed in the y
direction. In the DNS and switching regions, Fourier modes up to
8 times that for the velocity field are employed in the x and z direc-
tions, whereas in the LES region, the same grid system as that for
the velocity field is used.

In the present study, the grid resolution in the air phase is the
same as that for the velocity field in the water phase (or the concen-
tration field in the LES region). The concentration fields in the air
and water phases at low wavenumbers jkxj 6 kx_LES and jkzj 6 kz_LES

are coupled through the Henry’s law and the continuity of mass flux
given by Eqs. (14) and (15), respectively. Here, kx_LES and kz_LES are
the maximum wavenumbers in x and z directions in the LES region.
For higher wavenumbers, ~c(kx, 0, kz) = 0 is imposed at the interface,
where ~c(kx, y, kz) denotes a Fourier coefficient of concentration fluc-
tuation for the streamwise and spanwise wavenumbers of kx and kz

at the x-z plane a distance y from the interface.
The filtered transport equation for concentration c can be given

as

obc
ot
þ buj

obc
oxj
¼ 1

Res � Sc
o2bc

oxjoxj
� oðAcnjÞ

oxj
: ð16Þ

where nj is the subgrid-scale mass flux. For the subgrid model, we
employed the Dynamic Smagorinsky Model (DSM):

nj ¼ �2Cc
bD2jcSij j

obc
oxj

: ð17Þ

where bD and cSij denote the local grid width and the strain rate ten-
sor, respectively. The unknown coefficient Cc is calculated using the
Germano identity with the double-filtering procedure [19]. In Eq.
(16), Ac is a function of the distance from the interface yw and acts
as a switching function between DNS and LES. In the DNS and LES
regions, Ac takes two limiting values of 0 and 1, respectively. In
the switching region, Ac is linearly increased from 0 to 1 with the
distance from the interface.

In order to verify the present calculation, we run four computa-
tions with different depths of the DNS region (Cases 1 and 2) and
different grid resolutions for the concentration and velocity fields
(Cases 1, 3 and 4). All computational conditions are listed in Table
1. The verification procedures are essentially the same as those in
Hasegawa and Kasagi [18].
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Fig. 3. Concentration fluctuation in (a) water and (b) air phases.
3. High Schmidt number effects on concentration field

3.1. Statistics of concentration field

The flow statistics under the present condition have been
already reported by Lombardi et al. [20]. They also mentioned that
20% of quasi-streamwise vortices appeared to be coupled across
the interface. However, the air–water coupling was found to be
too weak for the detection technique they used, so that the pres-
ence of the coupling and its effects on the interfacial mass transfer
still remain open questions. In this section, we focus on the cou-
pling effects on the concentration statistics and the mass transfer
mechanisms.

The mean concentration profile in the air and water phases is
presented in Fig. 2. Due to the large density ratio in Eq. (15), the
most mass transfer resistance exists in the water phase, even
though the Schmidt numbers in both phases are the same, i.e.,
Scw = Sca = 1.0. With increasing Scw from 1 to 100, the resistance
in water is more pronounced. Namely, the interfacial mean con-
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centrations at Scw = 1.0 and 100 are CI = 0.964 and 0.995, respec-
tively. The boundaries between the DNS, switching and LES regions
in Case 1 are also depicted in Fig. 2. By inserting the switching re-
gion, we obtain the smooth profile across the boundaries.

The concentration fluctuations close to the interface in the
water and air phases are shown in Fig. 3a and b, respectively. Since
the most concentration change occurs in the water phase, the con-
centration fluctuation crms(y = 0) at the interface is negligible for
the aqueous concentration boundary layer. With increasing the
Schmidt number in water, the interfacial concentration fluctuation
is further decreased. Specifically, crms(y = 0) = 0.54 � 10�2 and
0.73 � 10�3 at Scw = 1.0 and 100, respectively. The peak value of
the concentration fluctuation normalized by the difference DCBw

between the interfacial concentration and bulk concentrations in
water is about 0.25 at Scw = 100, which agrees well with the LES
data of Calmet and Magnaudet [16].

In the air phase, the concentration fluctuation has its peak at
the interface (see Fig. 3b). This indicates that the concentration
fluctuation generated in water is transported across the interface
by molecular diffusion as will be discussed in Section 3.2. The
generation of concentration fluctuation in air is insignificant
because the mean concentration gradient is much smaller than
that in water.

In Figs. 2 and 3, the results in Cases 1–4 are plotted. It is found
that the dependency on the grid resolution and the depth of the
DNS region is quite weak. Specifically, the difference in the mass
transfer rate K is less than 2%. Hanratty [21] complied experimen-
tal data under a wide range of the Reynolds number and concluded
that K can be well expressed in the simple form as
Kþ ¼ K�=u�sw ¼ BSc�1=2

w , where the proportional constant B is
around 0.12. Jähne et al. [22] obtained B = 0.11 from experiments
in circular and linear wind/wave tunnels with various tracers.
The value of B obtained in the present calculation is 0.097, which
agrees fairly well with the experimental data. The slight underes-
timate in the present study might be attributed to the neglect of
surface waves, since DNS data for a deformable sheared interface
[15] results in a slightly higher value of B = 0.11. We should also
note that the effects of the bottom wall are also included in the
experimental data.

We also confirmed that the one-dimensional spectra of con-
centration fluctuation in the x and z directions show good agree-
ment over the whole range of wavenumbers in all cases. The
concentration spectra close to free and solid surfaces at different
resolutions were reported in Hasegawa and Kasagi [18]. In order
to clarify the effects of grid refinement in the x and z directions,
we performed additional calculation without horizontal gird
refinement. In this case, the concentration fluctuations at high
wavenumbers significantly accumulate so that the concentration
fluctuation is overestimated by 5% around the peak location.
From these results, we conclude that the grid resolution and
the depth of the DNS region used in Case 1 are necessary and
sufficient not only to obtain the concentration statistics, but also
to study the local mass transfer mechanisms. Hereafter, the re-
sults obtained in Case 1 is shown.

3.2. Spatio-temporal correlation between local mass transfer rate and
velocity components

In order to clarify air–water coupling effects on the interfacial
mass transfer, the following spatio-temporal correlation coeffi-
cients between the local mass transfer rate k, and velocity/concen-
tration fluctuations around the interface are calculated:
Rkcðy;DtÞ ¼ k0ðx; z; tÞ � c0ðx; y; z; t þ DtÞ
krms � crms

; ð18Þ
where,

k ¼ q�

u�sw � DC�
¼ �1

Scw � Resw

ocw

oyw
jyw¼0; ð19Þ

and c in Eq. (18) represents a velocity component or concentration.
In calculating the spatio-temporal correlation, x is directed to the air
flow direction, while y is distance from the interface defined to be
positive in air and negative in water. The results at Scw = 1.0 and
100 are shown in Fig. 4a and b, respectively.

In general, the spatio-temporal correlations have larger abso-
lute values on the water side. Specifically, upwelling of low con-
centration fluid leads to high mass transfer rate (Rkv > 0, Rkc < 0).
With increasing the Schmidt number from 1.0 to 100, the absolute
values of Rku and Rkc are decreased away from the interface, i.e.,
yþw ¼ 7:2. In contrast, Rkv is kept high, i.e., Rkv � 0.6 even at the high
Schmidt number. This suggests that the normal velocity fluctuation
plays a critical role in controlling the local mass flux.

In the air phase, Rkc shows a considerable value close to the
interface. Specifically, negative concentration fluctuation (Rkc < 0)
is associated with high interfacial mass flux. It is diffused inside
the air phase with time. This result indicates that impingement
of low concentration water on the interface governs the concentra-
tion fluctuation in air. This is consistent with the fact that the con-
centration fluctuation in the air phase has a peak at the interface as
shown in Fig. 3b. In contrast, the correlation between k and veloc-
ity components are generally quite small. This indicates that the
velocity fluctuation in the air phase hardly contributes to the inter-
facial mass transfer. This agrees with wind-tunnel measurements
by Komori et al. [23], where the frequency of the appearance of or-
ganized turbulent motions in water is found to be much lower than
that in air at the low wind speed considered here. Hanratty [21]
estimated the normal velocity fluctuations in water induced by
the fluctuating wind shear as

lim
yw!0
ðvþwÞrms ¼ ðsþz Þrms

ffiffiffiffiffiffiffi
qa

qw

r
Resa

Resw

pffiffiffiffiffiffiffi
xþa

p
kþa

yþw; ð20Þ

Here, kþa and
ffiffiffiffiffiffiffi
xþa

p
is typical diameter and frequency of quasi-

streamwise vortices in the air phase. sþz is the spanwise interfacial
shear stress associated with the quasi-streamwseise vortices.
Assuming that kþa ¼ 20, xþa ¼ 0:1 and ðsþz Þrms ¼ 0:1, Eq. (20) leads
to limyw!0ðvþwÞrms � 0:002yþw. This value is at most 3% of the present
numerical result. Hence, we conclude that the self-sustaining mech-
anisms of turbulence due to the mean shear, which are similar to
those near a solid wall, are dominant in water. Hereafter, we focus
on turbulent transports in the water phase.

3.3. Visualization of velocity and concentration fields near interface

The instantaneous distributions of the local mass transfer rate k
at Scw = 1.0 and 100 under the identical flow field are shown in
Fig. 5a and b, respectively. Low mass-flux regions have streaky
structures. They become finer with the Schmidt number increased.
On the other hand, high mass-flux regions are characterized by
spotty structures. These structures are almost independent of the
Schmidt number and even more highlighted at Scw = 100.

In order to investigate the relationship between the high mass-
flux regions and turbulent structures, the instantaneous velocity
vectors and concentration fluctuation in the y–z plane are pre-
sented in Fig. 6. The local mass transfer rate k, the surface diver-
gence b and the fluctuation component of streamwise interfacial
shear stress s0x are also plotted. It is observed that the local mass
transfer rate correlates with the surface divergence fairly well even
at the high Schmidt number. In contrast, the local shear stress is
poorly correlated with any of them. This is consistent with high
Rkv in Fig. 4b.



-1.0

-0.5

0.0

0.5

-20 -10 0 10 20

 t+w

-1.0

-0.5

0.0

0.5

A
ir

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

W
at

er

-1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.5

R
k

A
ir

W
at

er
R

k

: Rku , : Rkv

: Rkc , : Rkk
y

+
a = 1.1

y
+

a = 7.2

Interface

y
+

w = 1.1

y
+

w = 7.2

Scw = 1.0

-20 -10 0 10 20

 t+w

: Rku , : Rkv

: Rkc , : Rkk
y

+
a = 1.1

y
+

a = 7.2

Interface

y
+

w = 1.1

y
+

w = 7.2

Scw = 100
a b

Fig. 4. Spatio-temporal correlation between local mass transfer rate and velocity/concentration fluctuations close to the interface at (a) Scw = 1.0 and (b) Scw = 100.

0.1

k

0

400

300

200

100

0
10008006004002000 x+

w

z +
w

400

300

200

100

0
10008006004002000 x+

w

z +
w

a

b
0.01

k

0

Fig. 5. Local mass transfer rate at (a) Scw = 1.0 and (b) Scw = 100.

Y. Hasegawa, N. Kasagi / International Journal of Heat and Mass Transfer 52 (2009) 1012–1022 1017
The high surface divergence region is caused by upwelling flow
associated with the streamwise vortex beneath the interface (see
Fig. 6b). This upwelling flow carries fresh fluid from the LES region
to the DNS region and brings about a large interfacial mass flux, so
the adequate coupling between the concentration fields calculated
by DNS and LES is important.
4. Interfacial mass transfer model

4.1. One-dimensional advection–diffusion equation

In order to investigate the quantitative relationship between
the local mass transfer rate and the surface divergence, a one-
dimensional advection–diffusion equation in the water phase is
revisited. Chan and Scriven [10] showed that the transport equa-
tion in an irrotational stagnation flow reduces without approxima-
tion to

oc
otþ
� bþðtÞyþ � oc

oyþ
¼ 1

Sc
� o2c
oyþ2 ; ð21Þ

where the velocity and the length are non-dimensionalized by the
shear units on the water side. The concentration is normalized by
the concentration difference DC�Bw

between the interface and the
bulk in water. Following McCready et al. [24], the fluctuating sur-
face divergence is modelled as

bþðtÞ ¼
ffiffiffi
2
p

bþ0 cosðxþ0 tþÞ; ð22Þ

where bþ0 ¼ bþrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ovþ=oyþjyþ¼0Þ

2
q

.
If we introduce a new coordinate Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Scxþ0

p
yþ and a time-

scale T ¼ xþ0 tþ, the Schmidt number disappears from Eq. (21),
and the only remaining parameter is bþ0 =x

þ
0 as follows:

oc
oT
�

ffiffiffi
2
p bþ0

xþ0
cosðTÞ � Y � oc

oY
¼ o2c

oY2 : ð23Þ

Since the concentration profile obtained by Eq. (23) continues to
grow, following Brumley and Jirka [25], we assume a length-scale
L+, beyond which turbulence always completely mixes the dissolved
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gas. Specifically, the tail of the concentration boundary layer is
instantaneously chopped off in the region of y+ > L+, (i.e.,
Y > L ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Scxþ0

p
Lþ) whenever the normal velocity fluctuation

switches from downwelling to upwelling.
In the above model, the Schmidt number appears only in the

distance L ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Scxþ0

p
Lþ between the interface and the outer bound-

ary. By assuming L+ = 2, and xþ0 ¼ 0:1, which represents the thick-
ness of the viscous sublayer and the typical frequency of the
surface divergence, respectively, we find that L changes within
the range of O(1) < L < O(10) when Sc is increased from 1.0 to
100. Fortunately, the influence of L on the solution of Eq. (23) is
found quite weak. Therefore, we fix L = 50 and focus on the effect
of bþ0 =x

þ
0 on the solution.

The mass transfer rate Kþw and the correlation coefficient Rcv at
the interface obtained from Eq. (23) are presented in Fig. 7. It is
found that the solution of Eq. (23) undergoes a sudden transition
around bþ0 =x

þ
0 ¼ 1. Specifically, when bþ0 =x

þ
0 > 10, Rcv is kept high

and Kþw is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ0 =Sc

q
. In contrast, when bþ0 =x

þ
0 < 1,

both Kþw and Rcv are decreased drastically. In the following subsec-
tion, we will look into the transport mechanism in the two typical
regimes by focusing on two time-scales characterizing the concen-
tration filed near the interface.
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4.2. Response and renewal time-scales

According to the Chan and Scriven’s result [10] for steady
upwelling flow, i.e., b+ = const. and positive (see Fig. 8a), the
transient response time of the concentration field scales with
1/b+ regardless of the Schmidt number. After the transient re-
sponse time passes (t+ > 1/b+), the advection term balances
with the diffusion term in Eq. (21). Hence, we call 1/b+ the re-
sponse time-scale, which represents time for the concentration
boundary layer to response to the surface divergence. In this
case, the local mass transfer rate kBw can be calculated analyt-
ically as

kBw ¼
q�

u�sDC�Bw

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2bþ

p � Sc

s
: ð24Þ

Here, the typical length-scale of the concentration boundary layer is
given by dþB � ðb

þScÞ�1=2. This length is similar to the Batchelor
length-scale [26], which describes the smallest scale of concentra-
tion fluctuation in isotropic turbulence, if b+ is taken as the typical
intensity of straining motion. Therefore, we call this concentration
boundary layer the Batchelor sublayer. Conversely, if b+ is negative,
i.e., in the case of flow away from the interface (see Fig. 8b), the con-
centration boundary layer is stretched exponentially with time, so
that kBw rapidly diminishes.
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In the case of the fluctuating surface divergence given by Eq.
(22), the renewal time-scale 1=xþ0 , which is the typical time-scale
of a period of the velocity fluctuation, newly appears. If the renew-
al time-scale 1=xþ0 is sufficiently larger than the response time-
scale 1=bþ0 , i.e., bþ0 =x

þ
0 � 1, kBw can be estimated as follows:

kBw ¼
q�

usw � DC�Bw

¼

ffiffiffiffiffiffi
2bþ

p�Sc

q
� 0:8

ffiffiffiffi
bþ

Sc

q
bþ > 0

0 bþ < 0:

8<: ð25Þ

The balance between the advection and diffusion terms can also be
predicted independently from the above analysis by the decompo-
sition of c = C + c0 and an order-of-magnitude estimation of the fluc-
tuating term in Eq. (21):

oc0

otþ|{z}
Oðxþ0 c0 Þ

� bþðtÞyþ dC
dyþ
þ bþðtÞyþ oc0

oyþ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oðbþ0 dcDC=dcÞ¼Oðbþ0 DCÞ

¼ 1
Sc

o2c0

oyþ2|fflfflfflffl{zfflfflfflffl}
Oðc0=ðScd2

c ÞÞ

ð26Þ

Here, dc is the thickness of the concentration boundary layer. Since
the scale of the concentration fluctuation c0 is at most DC, the
advection term must balance with the diffusion term when
bþ0 =x

þ
0 � 1.

Hence, when bþ0 =x
þ
0 � 1, the concentration fluctuation is in

phase with the velocity fluctuation (Rcv � 1) and the global mass
transfer rate is correlated with the intensity of the surface diver-
gence as

Kþw ¼
K�w
u�sw

¼ A

ffiffiffiffiffiffi
bþ0
Sc

r
: ð27Þ

where the dimensionless proportional constant A is 0.36 (see Fig. 7).
On the other hand, when bþ0 =x

þ
0 < 1, the velocity fluctuates so

frequently that the balance between the advection and diffusion
terms does not hold anymore. Instead, the transient and advection
terms become dominant throughout the concentration boundary
layer. In this case, the transport Eq. (21) is approximated by

oc0

otþ
� bþðtþÞyþ dC

dyþ
� 0: ð28Þ

By substituting c0ðyþ; tþÞ ¼ ~cðyþÞ � expðixþ0 tþÞ and bþðtþÞ ¼
~b � expðixþ0 tþÞ, we obtain

~cðyþÞ ¼
~b

ixþ0

dCþ

dyþ
yþ: ð29Þ

Eq. (29) indicates that the velocity fluctuation is out of phase
with the concentration fluctuation by 90 deg, and therefore does
not contribute to the mass transfer. This explains the drastic de-
crease of Rcv and Kw in Fig. 7 when bþ0 =x

þ
0 < 1. In this case, the

mass transfer rate converges to the value predicted by the film
model [27], i.e., Kþw ¼ 1=ðScLþÞ (see Fig. 7).

We confirmed that the balance of the fluctuating three terms in
Eq. (21) switches from one of the above-mentioned two to the
other in the neighborhood of bþ0 =x

þ
0 ¼ 1. As a result, the mass

transfer mechanism drastically changes as shown in Fig. 7. Hence,
we can conclude that the surface divergence contributes to the
mass transfer only when bþ0 =x

þ
0 > 1. In this case, the local mass

transfer rate k can be predicted by using the local surface diver-
gence b+ given by Eq. (25).

4.3. Quantitative relationship between local mass transfer rate and
surface divergence

The contribution of the surface divergence b+ to the interfacial
mass flux at Scw = 100 obtained in the present calculation is shown
in Fig. 9a. The contour value represents the product of the local
mass transfer rate k+ and the joint probability density function of
b+ and k+, so that the integral of the contour value over the whole
b+–k+ plane is identical to the total interfacial mass flux. The most
interfacial mass flux occurs in the region of b > 0, and the contour
shows good agreement with the prediction (25), which is depicted
as a solid line.

In order to demonstrate the robustness of the surface diver-
gence model (25), we conduct an additional calculation for high
Schmidt number turbulent mass transfer across a shear-free inter-
face. Upwelling and downwelling motions at a sheared interface
are driven by streamwise vortices as shown in Fig. 6. In contrast,
at a shear-free interface, they result from the distortion of bulk tur-
bulence due to the interfacial blocking effects [28,29]. For these
reasons, sheared and shear-free interfaces are sometimes referred
to ‘‘active” and ‘‘passive” interfaces, respectively.

We consider an open channel flow, where a shear-free bound-
ary condition is imposed for the tangential velocity components
at the interface, while a no-slip condition for the bottom boundary.
The interface is kept flat like the sheared case. The Reynolds num-
ber based on the friction velocity us at the bottom wall and the
depth d is set to be Res = 150. The constant concentration condi-
tions are imposed at the interface and the bottom wall, i.e., c = 1
and 0, respectively. The computational method and grids used for
solving the high Schmidt number concentration filed are essen-
tially the same as those used for the sheared interface.

In Fig. 9b, the contribution of the surface divergence to the
interfacial mass flux at Scw = 100 at a shear-free interface is shown.
Again, the present result agrees with the surface divergence model
(25). It is worth noting that the data at a shear-free interface exhib-
its better agreement than those at a sheared interface. One sensible
explanation for this would be the difference in the frequency range
of the surface divergence fluctuation between the two interfaces.
As discussed in Section 4.2, the time-scale ratio bþ0 =x

þ
0 is consid-

ered as the effectiveness indicator of the surface divergence in
the mass transfer. It is possible that the typical frequency of the
surface divergence at a shear-free interface is lower than that at
a sheared interface, so that the resultant effectiveness of the sur-
face divergence is enhanced.

In summary, the present results indicate that Eq. (25) is quite
robust regardless of the presence of the interfacial shear.

4.4. Budget of normal turbulent mass flux

The importance of the normal velocity fluctuation in the inter-
facial mass transfer is also highlighted in the budget equation for
the interface-normal turbulent mass fluxes cþ0w vþ0w in the water
phase given by

Dðcþ0vþ0Þ
Dtþ ¼ �vþ02

oCþ

oyþ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Production

� ocþ0vþ0vþ0

oy|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Turbulent diffusion

þ o

oy
cþ0

ovþ0

oyþ
þ 1

Sc
vþ0

ocþ0

oyþ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Molecular diffusion

� cþ0 � opþ0

oyþ|fflfflfflfflffl{zfflfflfflfflffl}
Concentration pressure�
gradient correlation

� 1þ 1
Sc

� �
� ocþ0

oxþj
� ovþ0

oxþj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dissipation

: ð30Þ

Each term of Eq. (30) is shown in Fig. 10a and b. At Scw = 1.0, the
production balances with the concentration pressure-gradient cor-
relation away from the interface. The dissipation and molecular dif-
fusion is generally very small except in the diffusive sublayer. On
the other hand, at Scw = 100, the dissipation as well as the molecular
diffusion becomes more dominant. An interesting feature is that the
sign of the dissipation turns opposite where the sign of the molec-
ular diffusion also changes. This trend is also found in the DNS data
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of Kawamura et al. [30] and Lakehal et al. [31] at moderate Schmidt
numbers up to 10. As a result, the dissipation becomes a major
source term in the region of yþw > 1. By decomposing the dissipation
term �ð1þ Sc�1Þ � ðoc0=oxjÞðov0=oxjÞ into three directional compo-
nents, it is found that the component in the y direction
�ð1þ Sc�1Þ � ðoc0=oyÞðov0=oyÞ is dominant among the three (not
shown here).

The above facts can be explained by a conceptual figure shown
in Fig. 8. Since we consider the concentration field inside the vis-
cous sublayer, we assume that ov0/oy is nearly constant in this re-
gion. When an upwelling flow occurs, i.e., ov0/oy < 0, the
concentration gradient becomes steeper than the mean concentra-
tion gradient inside the Batchelor sublayer, i.e., oc0/oy < 0, while
flatter outside the Batchelor sublayer, i.e., oc0/oy > 0 (see Fig. 8a).
Therefore, the dissipation of cþ0w vþ0w turns positive outside the Batch-
elor sublayer. On the other hand, in the case of a downwelling flow,
i.e., ov0/oy > 0, the concentration profile is stretched downward,
and the sign of oc0/oy becomes positive close to the interface, while
negative far from the interface (see Fig. 8b). As a result, the dissipa-
tion rate becomes positive outside the Bachelor sublayer in both
cases.

According to the above consideration, the dissipation term pro-
duces cþ0w vþ0w when the Bachelor sublayer dþB ¼ ðb

þ
rmsScÞ�1=2 is thinner

than the viscous sublayer. Under the present flow conditions, dþB is
nearly equal to 0.4 when Scw = 100. This roughly agrees with the
zero-crossing point of the dissipation of cþ0w vþ0w in Fig. 10b. It should
be also noted that two major source terms of cþ0w vþ0w at Scw = 100 in
Fig. 10b are the production and dissipation terms, which are tightly
linked to the normal velocity fluctuation. This means that the
interfacial–normal straining motion associated with the surface
divergence is the essential mechanism for generation of cþ0w vþ0w .

4.5. Mass transfer rate

Eq. (27) can be rewritten in the dimensional form as

K�w ¼
Q �

DC�Bw

¼ AðD�wb�rmsÞ
1=2
: ð31Þ

The dimensionless proportional constant of A has fallen within
0.2–0.7 in the previous studies. McCready et al. [24] carried out
numerical simulation of a simplified two-dimensional transport
equation and concluded that A = 0.71. The LES data of Calmet
and Magnaudet [16] and Magnaudet and Calmet [17] suggested
A = 0.6 for both shear-free and sheared interfaces. Note that their
definition of DC�Bw

in Eq. (31) is the concentration difference
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between the interface and y = L, where L is an integral eddy scale.
If we use the same definition, A in the present study is slightly in-
creased by 4%. The grid-stirred tank data of McKenna and McGil-
lis [13] lead to A � 0.5 for a clean interface and A � 0.3 for a
contaminated interface. The wind-wave channel data of Turney
et al. [14] suggested A = 0.45. Banerjee et al. [15] reported that
a value of A = 0.45 predicts their DNS data. The experimental data
of Tamburrino and Gulliver [12] and Law and Khoo [11] for shear-
free and sheared interfaces suggested A = 0.24 and 0.22,
respectively.

It is quite interesting that most of the previous data for a clean
interface concentrated around A = 0.4–0.5. This value agrees with
the present hybrid DNS/LES data, i.e., A = 0.40 and 0.44 for sheared
and shear-free interfaces, respectively. Furthermore, these values
are close to the value of A = 0.36 obtained by the one-dimensional
transport Eq. (21), although a single sinusoidal wave is assumed for
the velocity fluctuation. These results suggest that the balance be-
tween the advection and diffusion terms determines the local mass
flux under a variety of flow conditions.

Finally, we briefly remark the relationship between the surface
divergence model and the conventional surface-renewal model.
Eq. (3) is identical to Eq. (31) if we take the response time-scale
1=b�rms as the surface-renewal time s�s . However, the original sur-
face-renewal concept proposed by Danckwerts [3] divides the
transport process into advection and diffusion processes, and as-
sumes that the two separate processes alternatively occur at
every time period of surface-renewal s�s . This is in contrast to
the surface divergence model, where the balance of the advection
and diffusion terms determines the local mass flux. Since the ori-
ginal surface-renewal model cannot inherently describe convec-
tive surface-renewal motion, Fortescue and Pearson [32]
improved the model and proposed a two-dimensional eddy-cell
model, in which an eddy cell periodically and continuously re-
news the free surface. Later, this model was further improved
by incorporating the ideas of the time/space fraction of the sur-
face-renewal events [8,23]. In the improved eddy-cell models,
the surface-renewal time is represented by the ratio of the typical
velocity scale to length-scale of the eddy cell. This quantity is
essentially the same as the surface divergence. This would be
the reason why the mass transfer rate was well estimated by
the surface-renewal eddy-cell model for both sheared and
shear-free interfaces [7,23].

Recently, the surface divergence model draws attention because
it is a quantity that can be directly measured. On the other hand,
the surface renewal time s�s , which is critical in the surface-renewal
model (3), has to be inferred, since it cannot be directly measured.
As pointed out by Turney et al. [14], this might allow remote sens-
ing methods to be used for measuring the surface divergence. This
has the potential to provide more reliable estimates of the air–sea
gas exchange.
5. Conclusions

Numerical simulation of high Schmidt number mass transfer
across a sheared air–water interface was carried out via a hybrid
DNS/LES scheme. For a slightly soluble gas considered here, the
most concentration change occurs in the water phase. As a result,
the air–water interface is almost equivalent to the constant con-
centration boundary for the water phase. In contrast, the concen-
tration fluctuation in the air phase has a peak at the interface
due to the impingement of fresh water on the interface.

Because of the large density ratio, the dynamical coupling
between the air and water turbulent flows was found to be
quite weak at the low wind velocity considered here. Instead,
the self-sustaining mechanisms due to the mean shear govern
turbulence in the water phase. The spatio-temporal correlations
and the visualizations of the velocity and concentration fields
reveal that the surface divergence induced by the quasi-stream-
wise vortices in the water phase controls the interfacial mass
transfer.

In order to investigate quantitative relationship between the lo-
cal mass flux and the surface divergence, a one-dimensional advec-
tion–diffusion equation was analyzed. In this model, the fluctuating
surface divergence is modeled as bþðtþÞ ¼

ffiffiffi
2
p

bþ0 cosðxþ0 tþÞ. It is
shown that the concentration field near the interface is governed
by the ratio of the response time-scale 1=bþ0 and the renewal
time-scale 1=xþ0 . The fluctuating surface divergence contributes
to the mass transfer only when bþ0 =x

þ
0 > 1, and if this is the case,

the local mass transfer rate can be estimated from the surface diver-
gence by the Chan and Scriven’s stagnation flow model (25). This
would be a primary reason why the mass transfer rate has been suc-
cessfully correlated with the intensity of the surface divergence un-
der a wide range of flow conditions.

The present analysis showed that the surface divergence
model is valid only when bþ0 =x

þ
0 > 1. In a highly contaminated

interface, however, the surface divergence is strongly damped
and does not satisfy this condition anymore. Consequently, the
mass transfer rate falls down to the value at a solid surface
[9]. Also, for the decaying free-surface turbulence considered
in Pan and Banerjee [33], counter-rotating vortices persist at
the interface and die out very slowly. In this situation, the tan-
gential components of the convection terms in the original
transport Eq. (16) should also be important. Development of
the mass transfer model in such flow fields remains to be fu-
ture work.
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